Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Cambridge
IGCSE

CANDIDATE NAME

CENTRE

 NUMBER

PHYSICAL SCIENCE

0652/52
Paper 5 Practical Test
October/November 2015
1 hour 30 minutes
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Notes for Use in Qualitative Analysis for this paper are printed on page 12.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
Total	

This document consists of 9 printed pages and $\mathbf{3}$ blank pages.

1 Solid \mathbf{P} is a calcium salt. You are going to carry out tests on solid \mathbf{P} and identify some products of its reactions.
(a) - Remove the stopper from the hard glass test-tube containing solid \mathbf{P} for (a).

- Heat strongly for 2 minutes and hold a lighted splint at the mouth of the test-tube while heating.
- Leave to cool and keep the remaining solid for testing in (e). This is solid \mathbf{R}.
- Record your observations.
observations \qquad
\qquad
\qquad
(b) - Place half a spatula full of solid \mathbf{P} for (b) and (c) in a test-tube and add about $5 \mathrm{~cm}^{3}$ nitric acid. Gently heat the test-tube and hold pieces of damp red and blue litmus paper in the mouth of the test-tube, being careful not to touch the sides of the test-tube with the paper.
- Stop heating if the mixture starts to boil.
- Record your observations and conclusions. observations \qquad
\qquad
\qquad conclusions \qquad
\qquad
\qquad
(c) - Make a solution of half a spatula full of \mathbf{P} for (b) and (c) in distilled water in a beaker. If necessary warm the mixture to completely dissolve the solid.
- To about $5 \mathrm{~cm}^{3}$ of this solution of \mathbf{P} for (b) and (c), add an equal volume of barium chloride solution.
- Record your observations and conclusions.
observations
\qquad conclusions
(d) The reaction between \mathbf{P} for (b) and (c) and nitric acid in (b) produces two compounds. These are a different calcium salt and compound \mathbf{Q}.

You are provided with a solution of \mathbf{Q} in distilled water.
(i) Test some of solution \mathbf{Q} with red and blue litmus papers.

Record your observations.
observations \qquad
\qquad
(ii) To $5 \mathrm{~cm}^{3}$ of solution \mathbf{Q}, add a spatula full of calcium carbonate powder.

Record your observations.
observations \qquad
(iii) The hydrochloric acid provided has the same concentration as solution \mathbf{Q}.

To $5 \mathrm{~cm}^{3}$ of this hydrochloric acid add a spatula full of calcium carbonate powder.
Using your observations, compare the speed of this reaction with that seen in (d)(ii).
\qquad
\qquad
(iv) Using your results in (d)(i), (ii) and (iii), make conclusions about the properties of compound \mathbf{Q}.
conclusions
(e) (i) When the remaining solid from (a), compound R, has cooled, add hydrochloric acid and test any gas produced by passing it through limewater.

Record your observations.
observations
\qquad
\qquad
(ii) Suggest an identity for compound \mathbf{R}.

Please turn over for Question 2.

2 You are going to measure the resistance of a power source.
The circuit shown in Fig. 2.1 has been set up for you.

Fig. 2.1
(a) (i) Close the switch and connect the crocodile clip \mathbf{C} to the resistance wire at a distance d of 15.0 cm from end \mathbf{X}. Record in Table 2.1 the current I flowing through the wire and the potential difference V.

Switch off the circuit.
Table 2.1

distance d / cm	current $I /$	potential difference V/
15.0		
20.0		
25.0		
40.0		
60.0		
100.0		

(ii) In Table 2.1 insert the units for current and potential difference.
(iii) Repeat (a)(i) for values of d of $20.0 \mathrm{~cm}, 25.0 \mathrm{~cm}, 40.0 \mathrm{~cm}, 60.0 \mathrm{~cm}$ and 100.0 cm .

Record in Table 2.1 your values of I and V for each d. Remember to switch off between readings.
(b) Plot a graph of V (vertical axis) against I. Draw the best-fit straight line. You do not need to start your graph at $(0,0)$.

(c) Calculate the gradient of your line.

Show all working and indicate on your graph the values you chose to enable the gradient to be calculated.
gradient =
\qquad
(d) The positive value of the gradient of your line is equal to the resistance of the power source. Write down the resistance of the power source to an appropriate number of significant figures.
resistance of power supply = \qquad Ω
(e) Give one possible source of inaccuracy in the experiment and the precaution you took to minimise it.
source of inaccuracy
precaution

BLANK PAGE

BLANK PAGE

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{Cl}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$ [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ [in solution]	acidify then add aqueous barium chloride or aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
copper(II) $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) $\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	"pops" with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

 Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

